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Abstract Heat transfer by radiation and natural convection in a two-dimensional, air-filled
square enclosure with a vertical partition of finite thickness and varying height was investigated
numerically in the laminar regime. The horizontal end walls are assumed to be adiabatic, and the
vertical walls are at different temperatures. Calculations are made by using a finite volume method
and an efficient numerical procedure is introduced for calculating the view factors, with shadow
effects included. The results indicate that the partition does not significantly modify the heat
transfer rate through the cavity, especially at high Rayleigh numbers, provided that its height is less
than 90 per cent of the cavity height. The effects of radiation on the velocity and the temperature
fields and the overall heat transfer rates as a function of the widths of the vents, solid/fluid
conductivity ratio and Rayleigh number are documented.
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Nomenclature
A = aspect ratio (A=1)
D = dimensionless thickness of the partition, d/H
Fij = view factors between surfaces Ai, Aj
g = gravitational acceleration
H = enclosure height
k = thermal conductivity
Nucl = local convective Nusselt number
p,P = dimensional and dimensionless pressure
Pr = Prandtl number, ν/α
Ra = Rayleigh number, gβ (Th – Tc) H3/να
S = dimensionless distance between the parti-

tion and left boundary of the enclosure, s/H
T = temperature
Tc = temperature of the cold wall
Th = temperature of the hot wall
To = mean temperature, (Th + Tc) /2
u, U = dimensional and dimensionless x velocity

component

v, V = dimensional and dimensionless y velocity
component

W = dimensionless width of the gap, w/H
x,y = Cartesian coordinates
x,y = dimensionless Cartesian coordinates
Greek symbols
α = thermal diffusivity
ß = volumetric expansion coefficient
Θ = dimensionless temperature, T/Th
θ = dimensionless temperature, (T–To) /∆T
σ = Stefan-Boltzmann constante
ν = Kinematic viscosity of the fluid
µ = dynamic viscosity
εi = emissivity of the surface Ai
ρo = density of the fluid at To
∆T = maximal difference temperature, Th – Tc
Subscripts
f = refers to the fluid
i = refers to the surface Ai
p = refers to the partition
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Introduction
In recent years there have been numerous experimental and theoretical
investigations of natural convection in enclosures with partition due to its
considerable engineering interest, especially in building applications, for
thermal insulation and passive solar heating systems. An excellent review of
the past experimental and numerical studies reporting on the flow structures
and heat transfer rates in enclosures with partition attached at the top wall
and/or at the bottom wall, one extending upwards and the other downwards,
can be found in Khan and Yao (1993).

Not so many research works were done on completely partitioned enclosures
and most of them were about vertically divided cavities with very thin partition
so that the heat transfer within a partition is essentially one-dimensional
(Kelkar and Patankar, 1990; Nakamura and Asko, 1986). A detailed analysis on
the effects of a central partition assumed either infinitely thin and isothermal at
the average temperature of the hot and cold wall temperatures (ideal partition)
or relatively thin was discussed by Karayiannis et al. (1992). It is concluded that
the heat transfer rate can be calculated using the ideal partition modelling in
practical engineering applications concerning air-filled enclosures. The case of
multiple vertical partition was studied theoretically and experimentally by
Anderson and Bejan (1981) and, numerically and experimentally by Nishimura
et al. (1988). Both works concerned water filled enclosures and very thin
metallic positions.

Probert and Ward (1974) experimentally studied the heat transfer behaviour
in a partitioned enclosure of large aspect ratio. They concluded that such a
configuration does not produce any significant change in the heat transfer rate
across the cavity, even when the partition length equalled 90 per cent of the
cavity height because this arrangement does not greatly disturb the flow. The
same problem was reconsidered numerically by Kelkar and Patankar (1990) for
air-filled cavity of square cross section. A study was conducted for two Rayleigh
numbers (105 and 106), different widths of the gap connecting the two parts of
the enclosure and perfectly conducting or adiabatic thin partition. It was shown
that the reduction in heat transfer due to the partition decreases with increasing
Ra because of the thinning of the horizontal boundary layers. However, plots of
the mean Nusselt number versus the gap width display significant decreases in
heat transfer for partition lengths greater than 90 per cent of the height of the
cavity, whatever the Rayleigh number and thermal conductivity of the partition.
Most recently, the effect of partition conductivity, partition heights, partition
thickness and partition location on the heat transfer in a two-dimensional
square enclosure is reported by Sun and Emery (1994) and Nag et al. (1994).

In all of the above mentioned studies, the influence of radiation is ignored. It
can be proved for experimental works in which water or other liquid is used as the
working fluid while it is rather surprising that the assumption of neglecting the
effect of radiation is not even mentioned in many of the theoretical studies which
dealt with complex gas-filled enclosures. For example, the effect of radiation
exchanges between surfaces on natural convection is known to be important,
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even at room temperature, in air-filled cavities the walls of which are not
maintained at prescribed temperatures or perfectly reflecting. For partitioned
cavities, the radiation-convection interaction to the partition should be considered
in a number of practical situations for which the emissivities of the surfaces are
generally high. As far as the authors are aware, the paper of Chang et al. (1983) is
the only one in which interaction of radiation and natural convection was
considered for an enclosure partitioned by two vertical adiabatic partitions of
finite-thickness and equal length located at the ceiling and floor. Both surface and
gas radiation effects were studied and it is shown that the predominant
mechanism by which radiation process increases the overall heat transfer rates is
the surface radiation. For the asymptotic case of a completely partitioned cavity,
the heat transfer rate by radiation modifies the surface temperatures of the
partition, and therefore, the natural convection flow is strongly affected by
radiation. A very thin vertical partition located within a rectangular differentially
heated cavity acts as a radiation screen. In this case, it is known that approximate
analyses based on analogous electrical circuits provide quite accurate estimates
of the effect of a partition assumed to be very thin and located at the mid-section
of a rectangular cavity was carried out by Nakamura and Asko (1986). It was
shown that the emissivities of the top and bottom walls only slightly affect the
heat transfer by convection in both cases of conductive and insulated top and
bottom walls. On the other hand, the emissivities of the cold and hot walls and of
the partition were shown to modify considerably the convection heat transfer.

This paper describes the effect of adding a thick partition located vertically
close to the hot wall of a differentially heated cavity, forming a narrow vertical
channel in which the flow is controlled by vents at the bottom and top of the
partition as shown in Figure 1. A numerical examination of radiation-
convection interaction is presented, the focus being on engineering applications
at room temperatures and for enclosures filled with air (non-participating gas).
It is shown that radiation has a significant influence on the flow and heat
transfer in the channel. In this study, the sizes of the vents and thermal
conductivity of the partition are other parameters of interest.

Figure 1.
The geometry
considered
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Mathematical model
Details of the geometry are shown in Figure 1. The flow is assumed to be
incompressible, laminar, stead and two-dimensional in an enclosure of square
cross-section, the horizontal end walls are perfectly insulated while the two
vertical walls are maintained at two different temperatures Th and Tc
respectively. To simplify the analyses, the Boussinesq approximation is
invoked. The working fluid is air and its physical properties except density are
assumed to be constant at the average temperature of Th and Tc. Radiation
exchanges in the enclosure are considered to be between opaque, diffuse and
grey surfaces.

The equations are nondimensionalized using the following definitions of the
dimensionless variables (see the nomenclature):

X = x/H ; Y = y/H
U = uH/α ; V = vH/α
θ = (T – To)/(Th – Tc) ; P = (p + ρogy)H2/ρoα

2

the dimensionless governing equations in the fluid domain can be expressed as:
Continuity:

(1)

X momentum:

(2)

Y momentum:

(3)

Energy:

(4)

Where λ and Rk are equal to 1 in the fluid region and λ = ∞, Rk = kp/kf in the
solid region.

The thermal condition at the surface of the partition is determined by a
balance between radiation, conduction and convection as:

(5)

Where Nr = σ T4
h / (kf 

∆T
H ) the radiation number, Qr the dimensionless net

radiation flux and “ n→” denotes the unit normal vector to the surface at the
partition-air interface.

For the insulated bottom and top walls, the following balance applies:
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(6)

The cold and hot walls are maintained at dimensionless temperatures of –0.5
and 0.5 respectively. For the velocity field, the boundary conditions are of the no-
slip type.

The equations (5) and (6) are discretized. In order to do this the radiating
surface of the solid forming the enclosure and the partition is divided into a
number of surfaces Ai, i = 1, … , N. Therefore, the dimensionless net radiative
flux density along a diffuse grey surface “Ai” is expressed as:

(7)

Where Ri and Hi are the dimensionless radiosity and incident radiation:

(8)

Where the dimensionless radiative temperature Θi is given by:

(9)

For an enclosure consisting of N nonisothermal surfaces such that the radiative
properties are uniform over each surface, the radiation flux arriving at surface
Ai may be expressed as:

(10)

The diffuse view factors between the two isothermal surfaces, Fi-j , depends
only on their positions and orientations. For further details on the expression of
the net radiative flux, the reader can refer to Siegel and Howell (1972).

The heat flux at the side isothermal walls is the sum of the conductive and
radiative fluxes. In dimensionless form, the local heat flux is defined as follows:

(11)

Where Xw = {0, 1}. Therefore, an overall local Nusselt number may be
introduced such as:

(12)

Where Nuc and Nur are the convective and radiative contributions in Num. The
average Nusselt numbers along the side walls are determined as:

(13)

For adiabatic end walls, Num (0) = Num (1).
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Finally, the volumetric exchange flow rates through the bottom and top vents
which are defined as:

(14)

The solution of these equations is dependent on a large set of parameters. These
are Pr, Ra, Rk, A, D, W, and S for the conjugate problem without radiation. When
including the effect of radiative exchange between surfaces, the above set must
be completed by three parameters: Nr, To, εi. In this paper, the aspect ratio and
Prandtl number are set constant (A = 1, Pr = 0.71) and the reference
temperature is set to be at To = 290K. Furthermore, the geometry and location
of the partition wall are defined by D = 0.05 and S = 0.1. Thus, the only
geometrical parameter which will be varied in the following is the width of the
vents (0 ≤ W ≤ 0.20).

Numerical procedure
The governing differential equations were solved by a finite-volume method
which utilizes a send-order central difference scheme for the advective terms in
order to reduce numerical diffusion errors. In the range of Ra numbers
investigated, the CDS solution did not exhibit spurious oscillations and the
convergence was achieved by using small underrelaxation factors on U, V and
θ. The SIMPLER algorithm for pressure-velocity coupling was adopted
(Patankar, 1980). The governing equations were cast in transient form and a
fully implicit transient differing scheme was employed as an iterative procedure
to reach steady-state. The presence of the partition was accounting by the
strategy in which it was characterized by a region of very high viscosity.

The resulting systems of discretized equations were solved by an iterative
procedure based on a preconditioned conjugate gradient method. The outer
iterative loop was repeated until the following convergence are simultaneously
satisfied:

(15)

Where φis a dependant variable and n the iteration number (i.e. false time step).
In most of the cases, the velocity components and temperature were driven to
εu = εv = εθ < 10–6. For the pressure correction equation, which is a discretized
Poisson equation, the iterative process was stopped when the maximum
residual of mass (amount by which the continuity equation was not satisfied)
was less than 10–8.

For the combined radiation and convection problem, the surface
temperatures on the partition and on the adiabatic end walls were calculated
from the non-linear heat balance equation (equations (5) and (6)) by using an
inner iterative procedure at every time step for the energy equations. The grid
was extended across the adiabatic boundaries by introducing one extra point in
order to discretise equations (5) and (6). The surface temperatures were updated
from the solution of the energy equation by under-relaxing the boundary

max| |φ φ εφ
n n+ − <1  

ψ thru A W

AW
U dY U dY= =

−∫∫ | | | |
  0
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evaluation of temperature. At each inner iteration, the linear system of
equations for the radiosities was solved by a direct method (Gauss elimination).

The grid was constructed such that the boundaries of the physical domain
coincide with the velocity grid lines. The points for pressure and temperature
were placed at the center of the scalar volumes. At the fluid-partition interfaces,
the control volume faces were also arranged so that a control volume face
coincide with an interface. This grid distribution was chosen to ensure the
interface energy balance. To avoid a checkboard pressure and velocity fields,
staggered grids were used for the U and V-velocity components in the Y and X-
directions respectively.

Computation of radiation
Since the radiative properties of the solid surfaces of the enclosure vary from
point (even on the isothermal side walls because the incident radiation cannot
be assumed as uniform), each of the surface was divided into finite number of
zones on which the four basic assumptions of the simplified zone analysis was
assumed valid. The number of zones retained was determined by the mesh used
to solve the differential equations. Therefore, the zoning was nonuniform and
the area of each zone varied according to the stretching function and number of
grid points used. For N control volume faces, this results in N(N–1)/2 view
factors to be calculated and in a linear system of N equations for the radiosities.
In view of the meshes used, N was typically of the order of 250. The view factors
were determined by using a boundary element approximation (Mezrhab, 1991).
This method is summarized here for a two-dimensional geometry including
shadow effects. Consider two surfaces Ai and Aj, as shown in Figure 2, very
long in the direction perpendicular to the plane of the figure. Let li and lj be the
lengths of the arcs corresponding to surfaces Ai, Aj in the plane of the figure.
For this 2D-geometry, the view factor between Ai and Aj reduces to:

(16)

Where θi (θj ) is the angle of the outward normal to dli (dlj) with the rij joining
these two elemental surfaces, and αij a function such as αij = 0 when shadow
effects occur or if θi(θj ) ≥ π/2 and αij = l otherwise.
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The approximation of a length l by boundary elements consists in the
discretization of l into elementary surfaces li and approximating each one by a
polynomial vector function F(η) where η is curvilinear coordinates associated
with the element (see e.g. Brebbia et al., 1984; Caruso, 1988).

The element is characterized by the degree of a single variable interpolation
polynomial and thus the number of interpolation points associated with it, as
illustrated in Figure 3. The polynomial approximation of the position vector,
r(η), reads:

(17)

Where r→p is the positive vector of the point Mp and where ϕp(η ) is the
Lagrange’s polynomial of degree (P–1) such that:

(18)

with δpq the Kronecker symbol.
The calculation of a curvilinear integral requires the transformation factor:

(19)

Using this procedure for the evaluation of the view factor between two
boundary elements of length li and lj leads to:

(20)

Let 
→
Gi = Ji

→
ni.

By writing a similar expression for cos θj dlj, we obtain, with –1 ≤ η ≤ 1:
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Where

(22)

In the present study, we used rectilinear boundary elements and Lagrange
polynomials with ηp = 0 if Mp is at the element center. Therefore, the liner
approximation of →rp is based on the following polynomials: 

(23)

The calculation of the integral is performed by using a Monte Carlo method
because this method is well suited for multidimensional integration. The
algorithm is based on a discretization of the integration domain (square of unit
side in two dimensions) into a set of sub-volumes.

In the present study, the partition acts as a screen. The aim is now to produce
an efficient algorithm for the calculation of αij. This algorithm can be explained
through Figure 4: the element lk intercepts the radiation going from a on li to b
on lj (see Figure 2) if the quadrilateral abcd is convex. This can be checked by
introducing four vectors 

→
Nab, 

→
Nbc, 

→
Ncd , and 

→
Nda normal to the four sides ab, bc,

cd and da. If the element lk intercepts the radiation from a to b, then:

(24)

If three of these requirement are satisfied, then the fourth is satisfied also. When
using the Monte Carlo method for calculating the view factors, the points a and
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b were randomly generated into each of the sub-volumes, until the convergence
of the calculation is reached, i.e. until the relative desired accuracy is obtained.

For the present combined convection and radiation problem, the boundary
elements were straightforwardly chosen as the N faces of the control volumes
lying on the solid surfaces. For each of the boundary elements, the summation
rule was checked and it has found that all the view factor summations verified
the conditions ∑N

j=1
Fi-j = 1±0.0001.

Code validation
The code was extensively exercised on benchmark problems to check its
validity. Calculations were first performed for the classical problems of flow in
a square driven cavity and for natural convection in differentially heated
cavities of various aspect ratios. Next, natural convection in partitioned
enclosures was considered. In this section, a comparison of our results with
those recently reported by Janssen and Henkes (1993) for natural convection in
a square cavity is present for Ra = 106 and 108. Then, the solutions obtained for
a square partitioned enclosure are compared with those of Kelkar and Patankar
(1990).

Table I allows a comparison of the present results for three quantities
selected in (Janssen and Henkes, 1993): the averaged wall heat transfer Nu along
the hot vertical wall, the maximum Vmax of the vertical along the horizontal
velocity along the vertical line through the cavity center. It should be noted that
the velocity scales used in (Janssen and Henkes, 1993) are (gβ∆Tυ)1/3 for U and
(gβ∆TH)1/2 for V. Therefore, the present U and V-velocity components reported
in Table I were multiplied by (RaPr2)1/3 and (RaPr)1/2 respectively. As can be
seen, all the quantities are in very good agreement with those of Janssen and
Henkes (1993). In addition, the deviation with respect to the reference solution of
Le Quéré (1991) are very small for the finest grid. We have used the same grid

Grid Ra Num. Ra–1/4 Vmax Umax

Janssen and Henkes
30 × 30 106 0.2782 0.2658 0.8174

108 0.2977 0.2794 0.8069
60 × 60 106 0.2789 0.2633 0.8145

106 0.2789 0.2633 0.8145
108 0.3013 0.2647 0.8528

120 × 120 106 0.2790 0.2621 0.8144
108 0.3020 0.2643 0.8769

Present
30 × 30 106 0.2800 0.2619 0.8179

108 0.3067 0.2601 0.7916
60 × 60 106 0.2792 0.2632 0.8154

108 0.3034 0.2651 0.8520
120 × 120 106 0.2791 0.2626 0.8125

108 0.3025 0.2644 0.8643

Table I.
Comparison of test case

with solutions of
Janssen and Henkes
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which in the horizontal direction, the stretching function chosen for the U
velocities is:

Where imax refers to the number of grid points in X direction.
In the work of Kelkar and Patankar (1990), the centrosymmetry property of

the solution was introduced and the governing equations were solved in half
of the physical domain. In the present study, the boundary conditions do not
possess symmetry properties owing to the radiative heat transfer terms.
Therefore, all the computations were carried out on the whole domain, even
for the test case discussed in this section. Figure 5 shows the variation of the
average Nusselt number and flow rates (equation (14)) with gap width for two
Rayleigh numbers and for perfectly conducting partitions as well as for
perfectly insulated partitions located in the vertical middle plans of a square,
differentially heated cavity. Like in Kelkar and Patankar (1990), we considered
very thin partitions. As can be seen in Figure 5, both heat transfer and flow
rates decrease with a decreasing gap width. These results can be favourably
compared with those displayed in Figure 2 of Kelkar and Patankar (1990).
Despite any numerical data were reported in Kelkar and Patankar (1990), the
largest discrepancies between the present results and those graphically
shown in Kelkar and Patankar (1990) can be estimated to be less than 3 per
cent.

When we include the radiation, the code was validated with results obtained
in Kassemi and Naraghi (1993) for all the cases with the transparent fluid in
enclosure. At the same problem, we obtain the same flow and temperature
profiles, and the differences between our and published results for the Nusselt
number are less than 2 per cent.

Based on the above studies, it was concluded that the code could be reliably
applied to the problem under consideration.

X
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Figure 5.
Variation of: (a) overall
Nusselt number; and (b)
throughflow strength
with gap width for
different Rayleigh
numbers
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Results and discussion
A preliminary study was carried out to determine the optimum nonuniform
grid (i.e. the best compromise between accuracy and computational costs). For
the calculations reported in this study a 41 × 41 grid points was chosen to
optimise the relation between the accuracy required and the computing time.
The grid is nonuniform and is fine near the solid surfaces and tips of the
partition. Increasing the number of grid points did not change the results
appreciably. For example, adding 20 grid lines in each direction changed the
Nusselt number by less than 1 per cent for all values of Ra.

Each case required the specification of seven dimensionless parameters (Ra,
Pr, Rk, A, S, D, W) among which the Prandtl number, the cavity aspect  ratio, the
gap width between the partition and the hot wall and the partition thickness
were held fixed at Pr = 0.7, A = 1, S = 0.1 and D = 0.05 respectively. The ranges
covered by the remaining parameters were 103 ≤ Ra ≤ 108, 0 ≤ W ≤ 0.2 and 0 ≤
Rk ≤ ∞. The three dimensional parameters corresponding to computations of
radiation are fixed as: Nr = 30, εi = 1 for 1 ≤ i ≤ N and ∆T/To = 0.12.

For Rk = 30, W = 0.025 and Ra = 106, Figures 6 and 7 show the isotherms and
streamlines respectively for Nr = 0 (i.e. in the absence of radiation) and for Nr =
30 (i.e. the presence of radiation). From the temperature contours, it appears
that the radiation heat transfer produces a good homogenization of temperature
especially in the cold part of the enclosure: the temperature stratification is less
pronounced and the core of the fluid becomes warmer when compared to
the natural convection case. It is seen in Figure 8 that the radiation reduces the
difference between the top and bottom temperatures. The temperature
gradients near the horizontal walls give an indication of the importance of
radiative flux. Along a cold wall, the gradients of termperature are less
important on the high part of cavity for Nr = 30, than in the low part of cavity.
The average convective Nusselt number is also less when we take into account
the radiation. One can see also, that the streamlines shown in the case with Nr
= 0 are very similar to those including radiation. When Nr = 30, the streamlines
indicate that the central vortices become weaker. Note, however, that the flow
near the cold wall remains strong in order to dissipate the extra heat delivered

Figure 6.
(a) Isotherms; and (b)

streamlines for Ra=106,
W=0.025, Nr=0

(a) (b)
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by radiation into the cold sink. It is observed that the radiation effects increase
the vertical velocity near the cold wall by 5 per cent. This is owing to the
increase of the flow rate through the bottom and the top vents. As a matter of
fact, the difference between the average fluid temperatures in the left part and
the right part of cavity increase with radiation, the circulation increases in the
channel delimited by the hot wall and the partition.

Nusselt number
The effect of the width of the vents on heat transfer rate was first examined for
Rk = 30 (i.e. kp ≅ 1 W/m.K) for various Ra. Figure 9 shows that the presence of
the partition has a significant influence on Num provided W < 0.1. The effect
of W on the Nusselt number is weaker until Ra = 104 because the circulation of
air is weak, thus the conduction is the principal mode of heat transfer. It is
observed an increasing of Num with W for W ≤ 0.1 and Ra ≤ 106, it is the same
for W ≤ 0.05 and Ra ≥ 107. The radiation increases the overall average Nusselt
number for all values of W and Ra, however, this increasing is less pronounced
as Ra is high. For example, for Nr = 30, the effect of radiation is to multiply Num
by 6 if Ra = 0, and by 2 if Ra = 105 whereas the increasing is only in the order

Figure 7.
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of 7 per cent for Ra = 108. For all simulations which correspond to Figure 9, the
radiative Nusselt number Nur on the hot wall is comprised between 3 and 4.5.
Consequently, the radiative contribution in combined heat transfer becomes
weaker and weaker as Ra increase.

The variation of the convective portion in local Nusselt number on the hot
wall, Nucl = Nuc (0,Y), is shown in Figure 10. It can be seen that the radiation
increases Nucl in the bottom portion near the hot wall for Ra = 105 and
decreases Nucl for Ra = 108. This is explained one more time by the
throughflow strength which is very important at moderate Ra. At high Ra, the
circulation induced by the buoyancy force is important and the principal effect
of radiation is also to reduce the convective heat transfer on the hot wall (the
same throughflow like two hot surfaces instead of one surface).

Throughflow strength
Figure 11 shows the variation of Ψthru with W for 105 ≤ Ra ≤ 108. For Ra ≤ 104,
Ψthru is smaller even if it increases under the radiation effect, and its maximal
value is about 0.3 when the width of the vents is inferior at 0.2. At Ra = 105, the

Figure 9.
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radiation effect on the Ψthru is significant from W ≤ 0.15, we can also note an
increasing in the order of 8 per cent. For W = 0.025, the increasing of Ψthru
under the effect radiation begin from Ra ≥ 107.

Effect of partition conductivity
The computations were carried out for two dimensionless conductivity ratio (Rk
= 0 and ∞) and for a fixed width of the vents (W = 0.025). The results obtained for
Rk = ∞ are similar to those obtained for Rk = 30. The effect of partition
conductivity on the Nusselt number is shown in Figure 12 for Nr = 0 and Nr = 30.

When Rk = 0, the value of the Nusselt number is weak for Ra ≤ 105 because
the fluid gets hot due to its inability to transfer heat through the adiabatic wall.
Otherwise, the heat transfer from the hot wall to the cold wall is made by the
vents and, since W is small, the flow is only generated if Ra ≥ 105. (For W = 0,
we have obviously Num = 0 for all values of Ra). When Ra ≥ 105, the transferred
heat flux increase rapidly and for Ra = 108, the partition do not decrease
practically the heat transfer. If we take into account the radiation, we observe
that the transferred radiative flux is small due to the obstacle played by the
partition. The order of its contribution in the Nusselt number is 50 per cent on

Figure 11.
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the hot wall for Ra = 105. It decreases when Ra increases and is only 10 per cent
at Ra = 108. The variation of the local convective Nusselt number along the hot
wall (Figure 13) confirms the strong obstacle effect played by the partition at Ra
= 105 and its weak influence at Ra = 108. It is shown too that the convective
contribution in the overall average Nusselt number is, in this case, slightly
modified by the radiation.

When Rk = ∞, the isolating effect of the partition is less important. However,
the rubble effect on the circulation of the fluid is reinforced. We have also Num
≥ 1 for all values of Ra. It can be explained easily: if the Rayleigh number is very
small, in order that the fluid circulates between the hot wall and the partition,
the heat is transferred by conduction in the fluid lane and the partition. The
problem is also similar to the one of the cavity differentially heated with a
thermal resistance on the hot wall. When Ra increases, we observe that the
overall average Nusselt number becomes almost independent of the partition
conductivity from Ra ≅ 2.106. It is, however, slightly inferior to the one obtained
for Rk = 0. Because the circulation of the fluid is made essentially in the cold
part of the cavity, the aspiration effect is also weaker than for Rk = 0. Finally,
though the nature of flow is sensibly affected by the value of the partition
conductivity, the heat flux transferred at high Rayleigh number (Ra ≅ 108) is
almost independent of the partition conductivity, of the exchange by radiation
and of the width of the vents when the one is superior at 2.5 per cent of the
height of the cavity. The calculations of the throughflow through the vents and
the velocity profile confirms this commentary made in Figure 12.

Conclusions
A numerical study of natural convection and radiation in partitioned square
enclosure, differentially heated, has been presented. Within the investigated
parameter ranges, the following conclusions can be drawn.

(1) For all values for Ra, the effect of the partition may be negligible if the
width of the vents is superior at W = 0.1.

Figure 13.
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(2) For a given value of W, the effect of the partition becomes negligible
when Ra is high.

(3) The radiation standardizes the temperatures in the two parts of the
cavity and increases the difference between the average temperatures,
increases the rate of the fluid in the space delimited by the wall and the
partition (channel effect). Its effect is to increase the circulation in all the
enclosure.

(4) Our study was carried with parameter radiation Nr = 30, which
corresponds to moderate difference temperature between the hot and
cold wall. However, we have observed that the radiation plays a very
important role in the overall heat transfer and the one is enhanced
significantly if the radiation is included. 
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